統計解析、多変量解析、実験計画法、工程能力指数について知っておきたいこと その1
グラフ作図、曲線計算のソフトはフリーソフトもネット上に公開されています
統計学は、マスターすれば強い武器になります。 統計学の代表的な時系列分析と回帰分析、いずれの分析も数式はたいへん複雑です。最近は、時系列分析、回帰分析の専門のソフトも販売されていて、便利に使うことができます。
工学などの分野では、複雑な計算を伴う場が出てきます。 従来は、どれだけ複雑な分野であっても、人間が計算を行うしかありませんでした。 しかし、正確な計算を行うことは非常に難しいため、間違いが多く発生しました。 現在では、工学分野専用の計算ソフトが開発されるようになっています。 システム出力を安定化は、フィードバック制御、計測器の校正、工程診断、フィードフォワード制御、予防保全、安全システム確認などに設定されます。
多数の結果変数のデータを統計的にまとめる多変量解析とは
多変量解析とは、あの現象が起こる原因を調べたり、その現象が今後どうなるか予測したりする分析手法をいいます。また、多変量解析では、ある現象は、どのグループに属するかの判定なども行います。
多変量解析には、重回帰分析、判別分析、主成分分析、因子分析、クラスター分析などの種類があります。重回帰分析は、目的変数に影響しているいくつかの変数との関係を分析し、目的とその要因となる変数の解明し、目的変数の今後の値を予測します。主成分分析と因子分析は、目的変数はなく、各変数相互の関係を分析し、数多くある変数を少数の因子に集約して、因子ごとの得点を計算します。
多変量解析は、互いに関係のある種類の異なる特性値が持つ特徴を分析し、目的に応じて総合的に解析する統計手法です。 多変量解析には、重回帰分析、判別分析、主成分分析、因子分析、クラスター分析などの種類があります。 判別分析は、 目的変数の各グループを識別している要因を明らかにし、どのグループに属するか予測します。 クラスター分析は、サンプルの中で似たものを集めて、グループ化します。
多変量解析は、例えば複数の顧客の意見やアンケート、傾向などを読み取り、 どのような手法を用いて結果をどのように解析するかなどに使われます。 多変量解析は、 膨大なデータから解析を行うため、従来は計算に用いるコストは膨大なものでしたが、 最近ではコンピューターの成長により、専用のソフトを用いれば簡単に実行できるようになりました。
実験計画法は心理学、薬学や工学、生物学など様々な分野で利用されています
実験計画法は、製品やサービスのプロセス、パフォーマンスを改善したい場合に、効果的な実験方法について考え、実験結果から得られるデータの解析方法と、予測方法を検討する統計学の応用手法です。統計学の応用手法のほとんどは、得られたデータの解析に用いられますが、実験計画法はデータの効率的な収集方法と分析方法を決める作業に用いられます。
統計解析、多変量解析、実験計画法、工程能力指数について知っておきたいこと その2
分析データの質が大きく異なる重回帰分析とロジスティック回帰分析とは
ひとつのデータの組で計算する重回帰分析と、多数のケースを集計した値で計算するロジスティック回帰分析とでは、 分析データの質は、大きく異なります。 グラフ作図、曲線計算の有料ソフトでは、設計や論文に使用できる高度な曲線グラフを作ることができ、 30日間ほど無料で試せるサービスを行っているところもあります。 エクセルの仕組みやフリーソフトで代用できない場合には、グラフ作図、曲線計算の有料ソフトを利用してみることをお勧めします。
回帰分析とは、値に何らかの変動があった場合、その変動の原因をデータに基づいて分析し、それぞれの関係を明らかにする統計的手法です。
時系列解析とは、時間的な順序をきめて一定間隔ごとに収集されるデータについて、統計的な分析を行うことをいいます。時系列解析の例としては、経済指標、政治指標、気象指標などがあります。また、生産工場では、原料の構成から製品の品質が、時間の経過ごとに記録され、時系列データをもつことになります。
回帰分析は、結果となった数値と、その要因となった数値の関係を調べて、その関係を表す数式を、回帰モデルとして示すことをいいます。 時系列解析とは、時間の経過ごとに記録された数値列からモデルを作成して、将来の予測を行う分析手法のひとつです。 時系列解析の例としては、 年度ごとの売上実績、月ごとの仕入価格、毎日の商品の販売単価などの販売指標があげられます。 このような、政治、経済、社会などの各分野での多くの基礎統計は、時系列データといえます。
ロジスティック回帰分析は、成功するか、失敗するか、などという2つの事象の確率と、 その他の因子群との関係を回帰式に求める場合に使われます。 ロジスティック回帰分析では、分類型のデータを集計して、発生確率として扱います。 確率を計算するには、多くの同一条件での発生数を計測しなければなりません。
タグチメソッドによる、特性値を考慮したパラメータ設計の手順とは
品質工学は、ロバスト設計、MTシステム、ソフトウェアテスト、オンライン品質改善の分野で構成され、実現する技術目標の種類により使い分けられます。 ロバスト設計は、タグチメソッドの原点であり、バラツキの少ない製品や工程を作る設計法です。 MTシステムのマハラノビス・タグチ法は、多変量の総合指標としてマハラノビスの距離を用いて、診断、予測、監視を行います。
システム出力を安定化は、フィードバック制御、計測器の校正、工程診断、フィードフォワード制御、予防保全、安全システム確認などに設定されます。
タグチメソッドによる、特性値を考慮したパラメータ設計の手順は、次のような内容です。テーマを分析すること、目的機能を明確にすること、理想機能を定義すること、信号因子とノイズを選択すること、 SN比や感度を求めること、制御因子を決めること、直交表に制御因子を割り付けること、データ解析を行うことなどの手順で、パラメータ設計を行います。